

Sulfated Flavonoid Oligomers"

VCU #13-087

Applications

- Supplement ongoing chemotherapy and/or radiation treatment
- Augment treatment of refractory cancers
- Second-line drug to prevent cancer recurrence
- Treatment of a variety of cancers, efficacy demonstrated in colorectal cancer

Advantages

- Target cancer stem-like cells demonstrated inhibition in colorectal cancer model
- Novel glycosaminoglycan mimetics with selective inhibitory effects
- Small molecules and easy to synthesize
- Target fundamental pathways crucial to cancer stem cells survival, renewal and induction of differentiation

Inventors

Umesh R. Desai, Ph.D. Rajesh Karuturi, Ph.D. Bhaumik B. Patel, M.D. Nirmita J. Patel, M.D.

Contact

Magdalena Morgan, Ph.D. Technology Manager <u>mkmorgan@vcu.edu</u> Direct 804-827-6095

Market Need

The cancer stem-like cell (CSC) hypothesis may explain the shortcomings of current anti-cancer therapeutics and posits a paradigm-shifting direction for the discovery of new anti-cancer drugs. The major shortcomings of the current anti-cancer therapeutics are the primary and acquired resistances to cytotoxic therapies, leading to disease recurrence. This phenomenon is likely to be a result of a very small population of cancer stem-like cells that posses the ability to self-renew, differentiate and reconstitute the entire tumor after initial treatment. Clearly, a therapeutic that selectively targets cancer stem-like cells to inhibit their self-renewal and differentiation potential is key to improving the survival of cancer patients.

Technology Summary

We have synthesized novel sulfated flavonoid oligomers that are able to inhibit the self-renewal and differentiation potential of cancer stem-like cells (CSCs). They modulate the interaction of glycosaminoglycans with protein factors, which are involved in growth and/or differentiation signaling, resulting in the **reduction** of the incidence of cancer recurrence due to CSCs. These novel molecules are non-polymeric glycosaminoglycan mimetics that are easy to synthesize, homogenous, highly water soluble, and bind to their protein targets, thereby providing a much higher level of selectivity. Efficacy has been demonstrated in murine tumor graft model of colorectal cancer.

Technology Status

In vitro and in vivo testing has been performed on the proposed molecules in murine xenograft models.

U.S. Patent: <u>US-2016-0280676-A1</u>

Article: Patel 2014 This technology is available for further development and commercialization.